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ABSTRACT
The paper addresses the problem of reconstructing a high
resolution image from a set of observation images sampled
at a lower rate and subject to additive noise and distortion.
The method introduced here is based on our work in mul-
tirate optimal filtering extended to two dimensions. The
linear filters used for the reconstruction are periodically
spatially-varying (in 2-D) and chosen so that their region
of support are closest to the point being estimated. Re-
sults are presented for images with additive white noise and
compared to methods using interpolation.
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1 Introduction

Super resolution (SR) imaging has recently become an area
of great interest in the image processing research commu-
nity [1, 2, 3]. The ability to form a high resolution (HR)
image from a collection of subsampled images has a broad
range of applications and has largely been motivated by
physical and production limitations on existing image ac-
quisition systems, and the marginal costs associated with
increase spatial resolution. Figure (1) depicts the SR con-
cept, where a collection of LR images of a scene are super-
imposed on a HR grid, available for subsequent HR image
reconstruction.

In this paper we propose a stochastic multirate ap-
proach to this problem, adapting and extending the work
in [4, 5, 6, 7, 8] to two-dimensional signals. The earlier
work has focused on information fusion, i.e., on the com-
bination of observations from multiple sensors to perform
tracking, surveillance, classification or some other task, and
on the reconstruction of one-dimensional signals from mul-
tiple observations at a lower rate. This work extends these
concepts to SR image reconstruction.
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Figure 1. The super resolution imaging concept.

2 Proposed Method

2.1 Observation Model

The relationship between the set of low resolution obser-
vations and the underlying high resolution image is mod-
eled in the block diagram of Figure (2). This sensor
model shows that each LR observation is acquired from
the HR image subject to distortion by linear filtering (typi-
cally blur), subpixel translation, downsampling, and chan-
nel noise. The parametersL1 andL2 represent the horizon-
tal and vertical downsampling factors, respectively. While,
the parametersi andj represent the horizontal and verti-
cal subpixel translation, respectively. The parameterN ij

represents additive white Gaussian noise. We can represent
the observation model as

F ij = D
(i)
L1

F GijD
(j)T
L2

+ N ij (1)

The matrixD(k)
L is called a “decimation matrix with time

delay” [7] and is used to extract the appropriate pixels to
form each observation matrix. The matrix is defined in
terms of a Kronecker product of the form

D(k)
L = I⊗ ιk 0 ≤ k ≤ L − 1 (2)

whereI is thePi×Pi identity matrix andιk is a1×L index
vector with a1 in thek + 1th position and0’s elsewhere.
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Figure 2. Observation model relating HR image with LR
observations.

2.2 Estimate

Consider the set of LR observations{F ij} and the related
HR imageF . We desire to form an estimate for the HR
image by some weighted sum of the LR observations. The
estimate can be written as

F̂ [n1, n2] =
L1−1∑

i=0

L2−1∑

j=0

〈f ij[n1, n2], H
(k1,k2)
ij 〉 (3)

where the expression on the right represents the Frobenius
inner product of the matrices, defined by

〈A, B〉 ≡ tr(ABT ) ≡
m∑

i=1

n∑

j=1

aijbij,

whereA andB ∈ Rm×n. Here the matrixf ij [n1, n2] of
sizeP × Q is the set of image points lying within the ap-
propriate LR image mask and matrixH(k1,k2)

ij is the corre-
sponding set of filter coefficients. The masks are chosen to
minimize the mean-square error

E{‖~F − ~̂
F‖2

F} (4)

where subscript ‘F’ represents the Frobenius norm. The
parameterski = ni modLi for 0 ≤ ki ≤ Li and(i, j)
represent subpixel translation with0 ≤ i ≤ L1 − 1,
0 ≤ j ≤ L2 − 1, and(i, j) ∈ Z. In the maximally deci-
mated case,i andj span the entire set{0, 1, . . . , L1 − 1}
and{0, 1, . . ., L1 − 1}, respectively. Both{fij [n1, n2]}
andH

(k1,k2)
ij are further described in Sections 2.3 and 2.4,

respectively.

2.3 Index Mapping/LR Image Mask

Developing the LR image masks involves mapping in-
dices in the HR sample index domainD1 to those in the
LR sample index domainD2. For a given pixel intensity
F [n1, n2], the HR indices[n1, n2] map to a set of sample
indices{[m1, m2]ij} which correspond to pixel intensities
{Fij[m1, m2]}. The indices corresponding to each obser-
vation matrixF ij are determined such that

|[n1, n2] − [m1, m2]ij| (5)

is minimized for each(i, j). This mapping can be shown
to be

[m1, m2]ij = [T (n1), T (n2)]. (6)

whereT [n] is defined by

T : n → n + 1 − (k − i + 1) modL − i

L
(7)

wheren ∈ D1, k = n modL, andi is the translation.
The LR indices[m1, m2]ij for each observation rep-

resent the centroid of each of the LR image masks. Given a
desired mask of sizeP × Q, each LR image mask is com-
prised of theP × Q pixels closest toF ij [m1, m2].

2.4 Filter Mask

If the desired HR imageF and its observations
F ij are jointly homogeneous, then the linear filters

H
(k1,k2)
ij required for optimal estimation are periodically

spatially-varying, an extension of [5]. This periodicity
can be described in terms of the “phase”(k1, k2), where
ki = ni modLi. If we define the set ofleast positive
residues asZn = {0, 1, . . ., n − 1}, thenk1 ∈ ZL1 and
k2 ∈ ZL2 , and all possible configurations of phase can be
represented asZL1 × ZL2 .

Figure (3) depicts the phase variation forL1 =
L2 = 2. In this caseZ2 = {0, 1} and Z2 × Z2 =
{(0, 0), (0, 1), (1,0), (1,1)}. The spatial periodicity of the
phase can be observed in this example by noting the regular
recurrence of phase terms.
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Figure 3. Index representation to modulo representa-
tion,withL1 = L2 = 2 (note the spatial phase periodicity).

2.5 Least Squares Formulation

In order to determine the filter coefficients required to es-
timate the HR image, a least squares (LS) approach is em-
ployed. We identify the set of all HR pixels that corre-
spond to a given phase and denote this set of HR pixels
as the matrixF (k1,k2). This concept is depicted in Figure
(4) where each shape corresponds to a unique phase (circle
(0, 0), square(0, 1), triangle(1, 0), and star(1, 1)). From
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Figure 4. Relationship between HR pixels and spatially-
varying filter masks in formulating the LS problem.

Equation (3) we can see that




F [l1, l2]
F [m1, m2]
F [n1, n2]

...


 =




∑∑
〈f ij[l1, l2], H

(k1,k2)
ij 〉∑∑

〈f ij[m1, m2], H
(k1,k2)
ij 〉∑ ∑

〈f ij[n1, n2], H
(k1,k2)
ij 〉

...




(8)

where the left hand expression is~F
(k1,k2)

. From this we
can write

~F
(k1,k2) ls= Φ ~H

(k1,k2)

ij (9)

whereΦ is the data matrix. This system of equations is
solved in a least squares sense for the required set of filter
masks at a given phase{H(k1,k2)

ij }.

2.6 Processing Method

The process used in the SR image reconstruction of a set
of LR images is described as follows. First, a HR train-
ing image is obtained that is representative of the class of
images that will be processed. From this image, a max-
imally decimated set of LR observations are derived and
then through the least squares methodology of Section 2.5,
filter coefficients are computed. With the class-specific fil-
ter coefficients, we are able to reconstruct images “of the
same class”, by employing the estimate of Equation (3). In
other words, we use training data to develop the filter masks
from a class representative HR image, then filter any sets of
LR images that are members of this class to reconstruct HR
images.

3 Results

In order to evaluate the performance of this method of im-
age reconstruction, we process the skyline image depicted
in Figure (5), subject to varying degrees of additive white

Gaussian noise. The image used for the training process is
the204× 204 pixel subimage depicted in this figure. From
this image, a set of filter masks is derived that is used in SR
image reconstruction.

Figure 5. Subimage used to train filter.

The target or object of the reconstruction is depicted
in Figure (6). From this204 × 204 pixel subimage, LR
observations are derived and are filtered using the class-
specific filter masks. The same level of additive white
Gaussian noise is used for the training and target images.

Figure 6. Subimage to be estimated.

Figure (7) depicts three members of the set of LR ob-
servations with various subpixel translations. The first im-
age represents subpixel translation by one pixel in the hori-
zontal direction and no translation in the vertical direction.
The second represents translation by one pixel in both the
vertical and horizontal directions. The third image repre-
sents translation by two pixels in both directions.



Figure 7. Downsampled observation images with subpixel
translations(1, 0), (1, 1), and(2, 2), respectively.L = 3,
P = Q = 3, No AWGN.

In the remaining figures, the left panel depicts the SR
image reconstruction using the proposed algorithm and the
right panel depicts nearest-neighbor interpolation of one of
the LR observations. In every case, the proposed method
is superior to the interpolated result. During these exper-
iments, other interpolation methods were considered, in-
cluding bilinear and bicubic methods, but again the pro-
posed method was superior.

Figure (8) compares reconstructed and interpolated
images for the case of no additive noise, downsampling by
3 in both the vertical and horizontal directions, and with
filter mask size of3 × 3. In this case, the reconstruction
yields a result that is visibly indiscernible from the target
image.

Figure 8. Comparison between a reconstructed image and
interpolated image withL = 3, P = Q = 3, No AWGN.

Figure (9) compares reconstructed and interpolated
images for the case of an SNR= 5 dB, downsampling by 3
in both the vertical and horizontal directions, and with fil-

ter mask size of3 × 3. In this case, we see the effects of
additive noise on the reconstruction. Despite some blurring
of edges, details are still discernible.

Figure 9. Comparison between a reconstructed image and
interpolated image withL = 3, P = Q = 3, SNR = 5
dB.

Figure (10) compares reconstructed and interpolated
images for the case of an SNR= −1.5 dB, downsampling
by 3 in both the vertical and horizontal directions, and with
filter mask size of3 × 3. In this case, the effects of addi-
tive noise on the reconstruction are quite deleterious. Fur-
ther blurring of edges is evident, and details have become
hard to see. Major features in the image are still discernible
however. Thus there is a significant advantage in using the
proposed method over interpolation, where not even major
features are discernible.

Figure 10. Comparison between a reconstructed image and
interpolated image withL = 3, P = Q = 3, SNR = −1.5
dB.



4 Conclusion

In this paper a multirate optimal linear filtering approach is
introduced for SR image reconstruction. Given some un-
derlying HR image that cannot be observed directly, the set
of related subsampled and translated LR images are com-
bined, in an optimal fashion, to yield an estimate of the HR
image. This method involves development of optimal pe-
riodically space-varying filters that are applied to these LR
observations. In order to evaluate the performance of this
method, several simulations were carried out, with vary-
ing degrees of additive white Gaussian noise. To evaluate
the performance the results of this reconstruction method
were compared to nearest-neighbor interpolation of LR ob-
servations. In every case, the proposed method performed
better.
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